Encapsulated nanoepigallocatechin-3-gallate and elemental selenium nanoparticles as paradigms for nanochemoprevention

نویسندگان

  • Dongxu Wang
  • Ethan Will Taylor
  • Yijun Wang
  • Xiaochun Wan
  • Jinsong Zhang
چکیده

Chemoprevention that impedes one or more steps in carcinogenesis, via long-term administration of naturally occurring or synthetic compounds, is widely considered to be a crucial strategy for cancer control. Selenium (Se) has chemopreventive effects, but its application is limited due to a low therapeutic index as shown in numerous animal experiments. In contrast to Se, which was known for its toxicity prior to the discovery of its beneficial effects, the natural compound epigallocatechin-3-gallate (EGCG) was originally considered to be nontoxic. Due to its preventive effects on many types of cancer in various animal models, EGCG has been regarded as a prime example of a promising chemopreventive agent without major toxicity concerns. However, very recently, evidence has accumulated showing that efficacious doses of EGCG used in health promotion may not be far from its toxic dose level. Therefore, both Se and EGCG need to be modified by novel pharmaceutical technologies to attain enhanced efficacy and/or reduced toxicity. Nanotechnology may be one of these technologies. In support of this hypothesis, the characteristics of polylactic acid and polyethylene glycol-encapsulated nano-EGCG and elemental Se nanoparticles dispersed by bovine serum albumin are reviewed in this article. Encapsulation of EGCG to form nano-EGCG leads to its enhanced stability in plasma and remarkably superior chemopreventive effects, with more than tenfold dose advantages in inducing apoptosis and inhibition of both angiogenesis and tumor growth. Se at nanoparticle size ("Nano-Se"), compared with Se compounds commonly used in dietary supplements, has significantly lower toxicity, without compromising its ability to upregulate selenoenzymes at nutritional levels and induce phase II enzymes at supranutritional levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introducing nanochemoprevention as a novel approach for cancer control: proof of principle with green tea polyphenol epigallocatechin-3-gallate.

Chemoprevention, especially through the use of naturally occurring phytochemicals capable of impeding the process of one or more steps of carcinogenesis process, is a promising approach for cancer management. Despite promising results in preclinical settings, its applicability to humans has met with limited success largely due to inefficient systemic delivery and bioavailability of promising ch...

متن کامل

Targeted nanoparticles encapsulating (−)-epigallocatechin-3-gallate for prostate cancer prevention and therapy

Earlier we introduced the concept of 'nanochemoprevention' i.e. the use of nanotechnology to improve the outcome of cancer chemoprevention. Here, we extended our work and developed polymeric EGCG-encapsulated nanoparticles (NPs) targeted with small molecular entities, able to bind to prostate specific membrane antigen (PSMA), a transmembrane protein that is overexpressed in prostate cancer (PCa...

متن کامل

Preparation and Physicochemical Characterization of Poly (D, L-lactide-co-glycolide) Nanoparticles for Controlled Release of EGCG

Chemoprevention, especially through the use of naturally occurring phytochemicals capable of impeding the process of one or more steps of carcinogenesis, is a promising approach for cancer management. Despite promising results in preclinical settings, its applicability to humans has met with limited success largely due to inefficient systemic delivery and bioavailability of chemopreventive agen...

متن کامل

PLGA-encapsulated tea polyphenols enhance the chemotherapeutic efficacy of cisplatin against human cancer cells and mice bearing Ehrlich ascites carcinoma

The clinical success of the applicability of tea polyphenols awaits efficient systemic delivery and bioavailability. Herein, following the concept of nanochemoprevention, which uses nanotechnology for enhancing the efficacy of chemotherapeutic drugs, we employed tea polyphenols, namely theaflavin (TF) and epigallocatechin-3-gallate (EGCG) encapsulated in a biodegradable nanoparticulate formulat...

متن کامل

Shedding light on selenium biomineralization: proteins associated with bionanominerals.

Selenium-reducing microorganisms produce elemental selenium nanoparticles with particular physicochemical properties due to an associated organic fraction. This study identified high-affinity proteins associated with such bionanominerals and with nonbiogenic elemental selenium. Proteins with an anticipated functional role in selenium reduction, such as a metalloid reductase, were found to be as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012